Numerical Evaluation of the Transient Response for a
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A third-order phase-locked receiver is presently being investigated for possible
use in tracking high doppler rates. This report presents additional data pertaining
to the transient analysis of a model of a third-order phase-locked receiver.

Specifically, the instantaneous response of the system is calculated for an input

phase function of the form

1
6(t) =0, + Q,t + SAL?

2

The results presented may be compared with those of the usual second-order loop.
It is hoped that this report will contribute some insight into the nature of the oper-
ation of third-order loops at least in the in-lock region.

l. Introduction

A third-order phase-locked receiver is presently being
investigated for possible use in tracking high doppler
rates. This report presents additional data pertaining to
the transient analysis of a model of a third-order phase
locked receiver presented in Ref. 1.

Specifically, the instantaneous response of the system is
calculated for an input phase function of the form

1

D) Aot?
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where

6, = initial phase offset
Q, = initial frequency offset
A, = frequency rate, Hz/sec

The results presented may be compared with those of the
usual second-order loop. It is hoped that this report will
contribute some insight into the nature of the operation
of third-order loops at least in the in-lock region.
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Il. Mathematical Model
A. Linear Transfer Function

From Ref. 1, a “realizable” open-loop filter transfer
function for third-order phase-locked systems is of the
form

1 + T28 1 (1
1+ 78 (1 + -rls) (8 + 738) )

F(s)=

The definition of the parameters r,, 7, and 7, are given
in Ref. 1. The resulting closed-loop transfer function L (s)

k(1 + 8) + 7 (1 + 8k) ro8 + 1 (rs8)?

L) = A8 7 (r T 7ok + e6k) 75 + (r + € F 38) (ros) T (ras)® @)
r = AK r3/7,, AK s loop gain
k = 1p/7s X [1—2(1—3W/Ve)#] (M)
€ = T2/Tl

In terms of the closed-loop transfer function L (s) there
is the following relation between the input phase 4 (t)
and the phase error ¢ (t)

¢ (s) =[1—L(s)]10(s) 3
where
g(s)= —0;0--!- %4— %

In general there will be non-zero initial conditions
which can be expressed in the form: (Ref. 1)

KT U U, U,
Uls) = s[1+rls+(l+ns)(8+rss)+ 3+1'3S:|

4)

Here, K’ is the gain from the output of the open loop
filter F (s), and the values of U;, U,, U; depend on initial
capacitor voltages.

Thus the total phase error satisfies the relation:

¢(s) = [1 = L(s)](8(s) +U(s) (5)

B. Calculation of Loop Parameters

The loop parameters k and r must be calculated in
terms of the parameters 8, and €.

@ [-atal et
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W =r+8k(r+e
} (8)

V=r-+e+ sk

The relation (7) expresses the condition that L (s) has
a pair of critically damped roots.

C. Calculation of Transient Response

The calculation of the transient response is done by
implementing the Heaviside expansion formulas:

2P (a)/q" (an) exp (aut) (9)

for the case g (s) has no repeated roots and

S (40 (a)/[(n — 1)l A1) trexp (at) + H ()  (10)

r=0

for the case when g (s) contains n + 1 repeated linear
factors.

Here
— (g — gy P0)
'/’(s) - (S a) q (S) (11)
The inverse Laplace transform is obtained for
[1—L(s)]8,/s, [1— L(s)]1Q/s?
L= LE1 s, 1= LON (5T ):
—-K'U,
[1- L(S”(sa Fppyy Py Tas)>
K'U,
and [1 — L(s)] < - m) (12)
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Each of the above transforms is the quotient of poly-
nomials p (s)/q (s), where the degree of q(s) is greater
than the degree of p(s). Also, it may be assumed that
the leading coefficient of g (s) is 1.

In case q (s) has no repeated linear factors, the compu-
tation of the transient error, based on formula (9) is
straightforward.

For the case when g (s) has repeated linear factors,

q(s) =(s—a)q.s) (13)
where
go(a) #0
Letting
y(s) = (s —a)p(s)/q(s) (14)

it is seen that

pe/ae =t 2 he
where
h = PO @O @6 ty@l o

(s —a)* qo(s)

is the sum of the partial fractions corresponding to the
remaining factors of q (s).

Since |h(a)] is finite, one can write

P(s) ~ qu(s) [¥'(a) (s — a) + ¢ (a)] = (s — a)* hy (s)
(17)
Thus

ho (s)
o (s)

h(s) = (18)

To find h(s), one may equate the coefficients of like
powers of s in Eq. (17). If q, (s) has repeated linear factors,
the above procedure is applied to the rational function
h(s). This process may be continued until p (s)/q (s) is
decomposed into partial fractions. Once the partial frac-
tion decomposition is completed, formulas (9) and (10)
may be applied to obtain the inverse.
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Thus the computational problem consists mainly of the
numerical evaluation of the roots of g (s), and in the de-
termination of the numerical values of the polynomials

P (s) and g5 (sx).

The JPL Library subroutine, POLZER, is used for the
numerical evaluation of the roots s of q (s). In every case
considered, the roots were accurate within five decimal
places. From a practical point of view, the errors made
in evaluating the roots of g (s) are insignificant, since the
values of system parameters are seldom known to a high
degree of accuracy.

The problem of implementing the general formula (10)
on a digital computer appears to be quite difficult. There-
fore, the evaluation of the transient response is limited to
those cases where q (s) has at most roots or order two.

Ill. Data Analysis

The data is presented in graphical form. The graphs
display the response of the system to the inputs:

) = t (Figs. 1-5)
- Qo
and
0(t) _ ¢ .
) (Figs. 6 and 7)

for various values of the parameters € and 8, and for zero
initial conditions.

There are five curves per frame. These are numbered
from 1 to 5 and corresponding parameters used to obtain
the curve appear on the plot frame.

It is interesting to note that the maximum transient
error is reasonably independent of the parameters € and
§ in the regions.

0<e=01, 0=8=01

As a practical example of the way these curves may be
used, consider the case for the response to a frequency

rate input when 8 and € are near zero, say & =0 and
€ = 0.001. Then the peak response from Fig. 6 is

Basol

A, 1.22
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Also, a reasonable assumption is that the maximum phase
error for lock-on is 1 rad. If we also assume a DSIF re-
ceiver bandwidth of 10 Hz, then the maximum frequency
rate is

Ao = 13.05 Hz/sec

max

It is interesting to note that this will not meet the
maximum one-way doppler rate expected at Jupiter en-

-

counter, which is 30 Hz/sec. However, for a bandwidth

of 20 Hz the maximum frequency rate is approximately
52.6 Hz/sec.

Figure 8 is a plot of the transient response for the
second-order loop where the input phase function is
0 (t)/Ao = t/2. The response in this case is independent
of the parameter 8 and approaches a stable value of
about 1.56 as € —> 0. For non-zero values of € the steady-
state response is unbounded.
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0.5
CURVE NO. K R 3 € T U U Ug
1 0.238 3.17 0.100 0.100 2.06 0.00 0.00 0.00
0.4 2 0.238 3.29 0.100 0.050 2.15 0.00 0.00 0.00 __]
' 3 0.238 3.35 0.100 0.020 2.20 0.00 0.00 0.00
4 0.238 3.38 0.100 0.010 2.22 0,00 0.00 0.00
5 0.238 3.40 0.100 0.000 2.24 0.00 0,00 0.00
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Fig. 1. Variable signal level, 8 = 0.1, ¢ = 010 0.1
{(third-order phase-locked system)
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Fig. 2. Variable signal level § = 0.05, ¢ = 0 to 0.1
{third-order phase-locked system)
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0.5
- . CURVENO. K R ) € - U U, Uy
1 0.248 3.16 0.020 0.100 2.06 0.00 0.00 '0.00
2 0.248 3.26 0.020 0.050 2.14 0.00 0.00 0.00
0.4 3 0.248 3.34 0.020 0.020 2,20 0.00 0.00 0.00 —
4 0.248 3.37 0.020 0.010 2.22 0.00 0.00 0.00
5 0.248 3.38 0.020 0,000 2.23 0.00 0.00 0.00
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Fig. 3. Variable signal level § = 0.02,e = 0t0 0.1
{third-order phase-locked system)
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Fig. 4. Variable signal level, 8 = 0.10,¢ = 0t0 0.1
(third-order phase-locked system)
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0.5
CURVE NO, K R -] € T2 U] U2 U3
1 0.250 3.14 0.000 0.100 2.05 0.00 0.00 0.00
2 0,250 3.26 0.000 0.050 2.14 0.00 0.00 0.00
0.4 3 0.250 3.33 0.000 0.020 2.19 0.00 0.00 0.00
4 0.250 3.35 0.000 0.010 2.21 0.00 0.00 0.00
5 | 0.250 3.38 0.000 0.001 2.23 0.00 0.00 0.00
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Fig. 5. Variable signal level, § = 0, € = 0.001 t0 0.1,,6 (1)/Q, = 4,
6 (1/A, = #*/2 (third-order phase-locked system)
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CURVE NO. K R 5 € T, U U, U
1 0.250 3.14 0,000 0.100 2.05 0.00 0.00 0.00
2 0.250 3.26 0.000 0.050 2.14 0.00 0.00 0.00
3 0.250 3.33 0.000 0,020 2.19 0.00 0.00 0.00
4 0.250 3.35 0.000 0.010 2.21 0.00 0.00 0.00
5 0.250 3.38 0.000 0.001 2.23 0.00 0.00 0.00
0 4 8 12 16 20
tuLf, sec

Fig. 6. Variable signal level, 5 = 0, ¢ = 0.001 to0 0.1
(third-order phase-locked system)
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Fig. 7. Variable signal level, 8 = 0.001 t0 0.1, ¢

{third-order phase-locked system)
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Fig. 8. Variable signal level, § = 0, ¢ = 0.001 to0 0.1

(second-order phase-locked system)
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